If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9y^2-112y+336=0
a = 9; b = -112; c = +336;
Δ = b2-4ac
Δ = -1122-4·9·336
Δ = 448
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{448}=\sqrt{64*7}=\sqrt{64}*\sqrt{7}=8\sqrt{7}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-112)-8\sqrt{7}}{2*9}=\frac{112-8\sqrt{7}}{18} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-112)+8\sqrt{7}}{2*9}=\frac{112+8\sqrt{7}}{18} $
| -5+6x=17 | | 24/g=3 | | 2d+7/6+d-5/3=6 | | b/7-2=2 | | 3(x-4)/7=6 | | 3d+14=56 | | 3/4(24x+24)-18=-1/2(14x-6) | | (9x-7=6x+8) | | 3/4k=8 | | 2y-26+y-9=180 | | 75=91p | | 23=28-j | | 15=23-2m | | 12n-10n=20 | | -y-3(-3y+5)=8y-15 | | 891+5x+5=13+5x | | -4z+3=19 | | 15=23−2m | | Y=172y+4 | | 8x-31÷0=x-5 | | 10x^2+120=0 | | 23=28−j | | 145-x=237 | | -3x=713 | | g/8+24=30 | | 2(x-5)-5(x-2)=x+7-(x-8) | | 25+6m=85 | | 35=5•4+5y | | 5/17p=-15/11 | | 6x^2=66x-42 | | 4/g=3.2 | | 4j-12=84 |